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Abstract

The research paper primarily focuses on the theoretical framework and mathematical method-
ology for solving the Sawada Kotera Ito with time fraction (SKI) equation using the Elzaki trans-
form decomposition technique, including the Caputo-Fabrizio derivative and the Atangana-
Baleanu derivative, which are crucial for comprehending the fractional SKI (1). Various nu-
merical examples are given to illustrate the application of the Elzaki transform in solving the
fractional SKI equation. We utilize efficient basis functions, namely fractional Lagrange func-
tions, for the interpolation of temporal variables. By integrating the primary equation with the
initial-boundary conditions and employing the relevant operationalmatrices for spatial and frac-
tional temporal variables, the proposed model is converted into a system of nonlinear algebraic
equations, which can be resolved using effective iterative solvers. Furthermore, we conduct a
comprehensive analysis of the method’s convergence. Furthermore, we evaluate multiple test
issues to assess the proposed scheme, which demonstrates its superior accuracy and less com-
putational expense compared to contemporary numerical methods in the literature.
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1 Introduction

Integral transformations are advantageous for their simplifying capabilities and are frequently
employed in addressing differential equationswith particular boundary conditions. The judicious
use of integral transformations facilitates the conversion of differential and integral equations into
a solvable algebraic equation structure.The attained solution is, naturally, the transformation of the
original differential equation’s solution, and it is essential to invert this transformation to finalize
the procedure [18, 13].

Over the past two decades, numerous integral transformations have been developed within
the realm of Laplace transforms, including the Smudu, Elzaki, Tabbi, Abboud, Borreza, Muhan-
nad, Gtransform, Sawy, and Kamal transforms. These transformations have been employed to re-
solve many forms of integral equations, such as Ordinary Differential Equations (ODEs), Partial
Differential Equations (PDEs), and Fractional Differential Equations (FDEs) [12].The integration
of these transformations with additional techniques, including Adomian analysis and homotopy
perturbation approaches has been employed to address various types of ODEs, PDEs, and FDEs
[20, 15].

In this study, we employed the Tweel-Elazki approach due to its efficacy in addressing the
complexity inherent in fractional differential equations. Fractional differential equations neces-
sitate specialized procedures and precise techniques to yield accurate and dependable outcomes
[17]. This drives our effort to examine an efficient technique, the Elzaki Transform, which converts
the original issue into a more tractable algebraic format, facilitating the derivation of analytical so-
lutions. The Elzaki integral transform represents the most sophisticated integral transform inside
the Laplace category, with all current integral transforms being specific instances of this transform
[19].

The subsequent structure of the paper is outlined as follows Section 2 presents many funda-
mental definitions and theorems of our suggested technique. In Section 3, we implement the trans-
formation on the SKI equation, detailing the step-by-step procedure for deriving the modified
equation and obtaining the solutions [9]. Section 4 conducts a thorough convergence analysis to
assess the validity and stability of the solutions obtained from this method, while Section 5 illus-
trates the efficacy of the proposed methodology through numerical applications, confirming its
correctness and reliability. Section 6 offers a concise conclusion.

Dα
t u(γ, t) = −252u3uγ − 63u3γ − 378uuγuγγ − 126u2uγγγ

− 63uγγuγγγ − 42uγuγγγγ − 21uuγγγγγ − uγγγγγγγ ,
(1)

with the starting condition,

u(γ, 0) =
4

3
b2
(
2− 3 tanh2(bγ)

)
. (2)

This study focuses on using the Elzaki transform decomposition approach to solve the seventh-
order time-fractional Sawada Kotera Ito equation, which has kernel derivatives that are both sin-
gular and non-singular [2]. The Elzaki transformation and decomposition approach are combined
to create ETDM. The proposed technique reduces the complexity of estimating the series terms
by eliminating the need to compute fractional derivatives or fractional integrals in the recursive
method [1], compared to the traditional Adomian procedure. Round-off errors are avoided using
ETDM, which also eliminates the need for linearization, prescribed assumptions, perturbation,
and discretization. Nonlinear differential equations involving multiple variables, such as linear
and nonlinear partial differential equations, are also addressed nonlinear.
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2 Definitions and Properties

In this section, we will learn about the ET and fractional derivative, as well as some basic in-
troductions and definitions. The text discusses the use of power-law and Mittag-Leffler functions
in the fractional derivatives framework.

Definition 2.1. Riemann-Liouville fractional integral (RLI) operator of order α > 0 for a function y (τ)
is given by,

Dαy (t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1yn(τ)dτ = In−αyn(t), t > 0. (3)

Definition 2.2. [12] For y ∈ H1 (0, t), t > 0, T > 0, α ∈ (0, 1]. Then the CF fractional operator is given
by,

CF
0 Dα

t y (t) =
B(α)

1− α)

d

dt

∫ t

0

y(τ)e−α t−τ
1−α dτ, 0 < α < 1.

Definition 2.3. [23] Caputo derivative of order 0 ≤ n−1 < α < nwith the lower limit zero for a function
y (τ) is given by,

Iαy (t) =
1

Γ(α)

∫ t

0

(t− τ)α−1y(τ)dτ, t > 0. (4)

Definition 2.4. [14] Let 0 < α < 1, denote the α order the A-B-fractional derivative defined as follows,

ABFDα
t f(t) =

β(1)

1− α

∫ t

0

f ′(ς)Eα

(
−α(t− ς

1− α

)
dς, t ≥ 0, 0 < α < 1, (5)

where f ∈ H ′(0, T ), function of normalization is β(1), and the Mittag-Leffler function (5).

Definition 2.5. [10] The Elzaki transform of a given mapping f(t) is stated as following,

E(f(t)) = T (v) = v

∫ ∞

0

e−
t
v f(t)dt, t ≥ 0, v ∈ [p1, p2] . (6)

Definition 2.6. [26] The Elzaki transform of the Caputo - Fractional derivative is given as following, (6)

E
[
cDDα

t f(t)
]
= v−αT (v)−

i−1∑
k=0

v2−α+kfk(0), i− 1 < α ≤ i. (7)

Definition 2.7. [22] The Elzaki transform of the Caputo - Fabrizo fractional derivative of the function f(t)
of order α, where 0 < α ≤ 1 and n ∈ □ ∪ {0} is given,

E
[
CFDα

t f(t)
]
=

1

1− α(1− v)

[
T (v)− v2f(0)

]
. (8)

Definition 2.8. [4] The Elzaki transform of the A-B-Caputo fractional derivative operator is given as
following,

E
[
ABCDα

t f(t)
]
=

N(α)

αvα + 1− α

[
v−1T (v)− vf(0)

]
. (9)

693



T. A. Khalid Malaysian J. Math. Sci. 19(2): 691–706(2025) 691 - 706

3 Methodology

In this section, we apply a unique approximation analytical approach to the following equation,
which is generated from the Elzaki transform decomposition process,

Dαu(x, t) +Ru(x, t) +Nu(x, t) = f(x, t), x, t ≥ 0, m− 1 < α < m, (10)

where Dα =
∂α

∂α
. The order α the Caputo fractional derivative is defined for natural numbers m,

with R representing a linear operator [21], N denoting a nonlinear function, and f representing
the source function. The initial and boundary conditions corresponding to (10) are expressed in
the following format,

u(x, 0) = h(x), 0 < α ≤ 1, u(x, t) → ∞, t > 0, (11)

and

u(x, 0) = h(x),
∂u(x, 0)

∂t
= k(x), 1 < α ≤ 2, u(x, t) → ∞, t > 0.

Case I: (ETDM-C)
By applying the Caputo sense fractional derivative to the Elzaki transform of (10), we
may get,

E [Dαu(x, t)] + E[Ru(x, t)] + E[Nu(x, t)] = E[f(x, t)], α > 0.

Using the property of Elzaki transform to get,

u(x, v)

vα
− C + E[Ru(x, t)] + E[Nu(x, t)] = E[f(x, t)], α > 0, (12)

where C =

n−1∑
k=0

v2−α+ku(k)(x, 0) and

E[u(x, t)] = vαE[f(x, t)] + vαC − vαE[Ru(x, t)]− vαE[Nu(x, t)]. (13)

The stander the Elzaki decomposition technique provides the answer, u(x, t) by the
series,

u(x, t) =

∞∑
n=0

un(x, t). (14)

The nonlinear operator is decomposition as,

Nu(x, t) =

∞∑
n=0

An. (15)

By applying the first Adomian polynomials [23] to the nonlinear functionNu(x, t), we
obtain,

E

[ ∞∑
n=0

un(x, t)

]
= vαE[f(x, t)] + vαC − vαE

[
R

∞∑
n=0

un(x, t)

]
− vαE

[ ∞∑
n=0

An

]
. (16)
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Matching both sides of (16) yield the following iterative algorithm,

E [u0(x, t)] = vαE[f(x, t)] + vαC,

E [u1(x, t)] = −vαE [Ru0(x, t)]− vαE [A0] ,
(17)

E [u2(x, t)] = −vαE [Ru1(x, t)]− vαE [A1] . (18)

Typically, the recursive relation is defined as,

E [un+1(x, t)] = −vαE [Run(x, t)]− vαE [An] , n ≥ 1. (19)

Applying inverse Elzaki transform (17)−(19) to obtain,

u0(x, t) = H(t), (20)
un+1(x, t) = −E−1 [vαE [Run(x, t)] + vαE [An]] , n ≥ 1. (21)

Case II: (ETDM-CF)
Using the CF fractional derivative and the Elzaki transform of (10), we get,

E [Dαu(x, t)] + E[Ru(x, t)] + E[Nu(x, t)] = E[f(x, t)], α > 0.

By utilizing the Elzaki transform property, we may obtain,

1

1− α(1− v)

[
T (v)− v2f(0)

]
+ E[Ru(x, t)] + E[Nu(x, t)] = E[f(x, t)], α > 0,

where C =

n−1∑
k=0

v2−α+ku(k)(x, 0) and

E[u(x, t)] = v2C +
(
1− α(1− v)

)(
E[f(x, t)]

)
−
(
1− α(1− v)

)(
E[Ru(x, t)] + E[Nu(x, t)]

)
.

(22)

The stander Elzaki decomposition method Specifies the resolution The function u(x, t)
can be represented as a series,

u(x, t) =

∞∑
n=0

un(x, t). (23)

The Nonlinear operator is decomposition as,

Eu(x, t) =

∞∑
n=0

An. (24)

By applying the first Adomian polynomials [23] to the nonlinear functionNu(x, t), we
obtain,

E

[ ∞∑
n=0

un(x, t)

]
= v2C + (1− α(1− v))(E[f(x, t)])

− ((1− α(1− v)))E

([
R

∞∑
n=0

un(x, t)

]
−

[ ∞∑
n=0

An

])
.

(25)
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The iterative procedure obtained by equating both sides of (25) is as follows, as men-
tioned in [7],

E [u0(x, t)] = v2C + (1− α(1− v))(E[f(x, t)]), (26)
E [u1(x, t)] = −((1− α(1− v)))E (Ru0(x, t) +A0) ,

E [u2(x, t)] = −((1− α(1− v)))E (Ru1(x, t) +A1) .
(27)

In general, the recursive relation is given by,

E [un+1(x, t)] = −((1− α(1− v)))E (Run(x, t) +An) , n ≥ 1. (28)

Applying inverse Elzaki transform (26)−(28), to obtain,

u0(x, t) = H(t),

un+1(x, t) = −E−1
[
((1− α(1− v)))E (Run(x, t) +An)

]
, n ≥ 1. (29)

Case III: (ETDM-ABC)
[6] Using the Atangana-Balena-Caputo fractional derivative and the Elzaki transform
of (10), we get,

E [Dαu(x, t)] + E[Ru(x, t)] + E[Nu(x, t)] = E[f(x, t)], α > 0.

Using the property of Elzaki transform, to get,(
N(α)

αvα + 1− α

)[
v−1T (v)− vf(0)

]
+ E[Ru(x, t)] + E[Nu(x, t)] = E[f(x, t)], α > 0,

where C =

n−1∑
k=0

v2−α+ku(k)(x, 0) and [3],

E[u(x, t)] = v2C +

(
αvα + 1− α

N(α)

)
(E[f(x, t)])

−
(
αvα + 1− α

N(α)

)
(E[Ru(x, t)] + E[Nu(x, t)]).

The stander Elzaki decompositionmethod specifies the resolution. u(x, t) by the series,

u(x, t) =

∞∑
n=0

un(x, t). (30)

The nonlinear operator is decomposition as,

Nu(x, t) =

∞∑
n=0

An. (31)

For the nonlinear function Nu(x, t) the first Adomian polynomials [3] to get,

E

[ ∞∑
n=0

un(x, t)

]
= v2C +

(
αvα + 1− α

N(α)

)
(E[f(x, t)])

−
(
αvα + 1− α

N(α)

)
E

([
R

∞∑
n=0

un(x, t)

]
−

[ ∞∑
n=0

An

])
.

(32)
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Matching both sides of (32) yield the following iterative algorithm [3],

E [u0(x, t)] = v2C +

(
αvα + 1− α

N(α)

)
(E[f(x, t)]), (33)

E [u1(x, t)] = −
(
αvα + 1− α

N(α)

)
E (Ru0(x, t) +A0) ,

E [u2(x, t)] = −
(
αvα + 1− α

N(α)

)
E (Ru1(x, t) +A1) .

(34)

In general, the recursive relation is given by,

E [un+1(x, t)] = −
(
αvα + 1− α

N(α)

)
E (Run(x, t) +An) , n ≥ 1. (35)

Applying inverse Elzaki transform (33)−(35), to obtain [16],

u0(x, t) = H(t),

un+1(x, t) = −E−1

[(
αvα + 1− α

N(α)

)
E (Run(x, t) +An)

]
, n ≥ 1. (36)

4 Analysis of Convergence

In this part, we have discussed the convergence and uniqueness of the ETDM-ABC, ETDM-CF,
and ETDM-C.

Theorem 4.1. The (10) ETDM-C solution is distinct when,

0 < (∆1 +∆2)
uα

Γ(1 + α)
< 1.

Proof. Let F = (A[I], ∥.∥) serve as the Banach space when the norm is ϑ(u)∥ = maxt ∈ J |ϑ(u)|, ∀
functions that are continuous on J. Consider G : F → . A nonlinear mapping is F , where
vAl (γ, u) = vA0 ,

vB(γ, t) = vB0 (γ, v) + vB1 (γ, v) + vB2 (γ, v) + . . . , (37)

uAn+1(γ, t) = uA0 +ET−1
[( v

S

)α
ET [L (vl(γ,u))]

]
+ET−1

[( v
S

)α
ET [E (vl(γ,u))]

]
, l ≥ 0.

Assume that,

|\(u)− \ (v∗)| < ∆1 |v− u∗| and |E(v)− E (v∗)| < ∆2 |v− v∗| ,

where∆1 and∆2 are Lipschitz constants and v := u(ζ, u) and v∗ := t∗(γ, t) These are two distinct
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values of a function.

∥Hv−Hu∗∥ = max
u∈I

∣∣∣∣ET−1

[(
l

r

)α

ET[L(u) + E(t)]
]
−ET−1

[(v
r

)α
ET [\ (v∗) + E (v∗)]

]∣∣∣∣
≤ max

t∈J

∣∣∣∣ET−1

[(
l

r

)α

ET [L(v)− \ (v∗)] +
(v
r

)α
ET [E(v)− E (v∗)]

]∣∣∣∣
≤ max

t∈I

[
∆1ET−1

[(
l

r

)α

ET |v− v∗|
]
+∆2ET−1

[(
l

r

)α

ET |u− v∗|
]]

≤ max
u∈J

(∆1 +∆2)

[
ETT−1

[(
l

r

)α

ET |v− v∗|
]]

≤ (∆1 +∆2)
[
ET−1

[(v
r

)α
ET ∥u− u∗∥

]]
= (∆1 +∆2)

uα

Γ(1 + α)
∥v− v∗∥ .

H is contraction as 0 < (∆1 +∆2)
uα

Γ(1 + α)
< 1. Different from the Banach fixed point theorem,

the answer to (10) is unique [24].

Theorem 4.2. [25] The ETDM-CF solution of (10) is unique when 0 < (∆1 +∆2) (1− α+ αv) < 1.

Proof. Since this proof is identical to Theorem 4.1’s, it has been left out.

Theorem 4.3. [5] The ETDM-ABC solution of (10) is unique when,

0 < (∆1 +∆2)

(
1− α+ α

tα

Γ(α+ 1)

)
< 1.

Proof. This proof was left out since it is similar to Theorem 4.1.

Theorem 4.4. ETDM-C solution of (10) is convergent.

Proof. Let vm =
∑m

r=0 vr(ζ,u). To prove that um is a Cauchy sequence in F . Consider,

∥vm − vk∥ = max
t∈J

|vm − vk|

= max
u∈I

∣∣∣∣∣
m∑

r=k+1

vp

∣∣∣∣∣ , n = 1, 2, 3, . . .

≤ max
u∈I

∣∣∣∣∣ET−1

[(
l

s

)α

ET

[
m∑

r=k+1

(\ (ur−1) + E (vrp−1))

]]∣∣∣∣∣
= max

t∈J

∣∣∣∣∣∣ET−1

(v
s

)α
ET

m−1∑
p=k

(L (vp) +N (ur))

∣∣∣∣∣∣
≤ max

u∈I

∣∣∣ET−1
[(v

s

)α
ET [(\ (vm−1)− \ (vk−1))]

]∣∣∣
+max

t∈J

∣∣∣ET−1
[(v

s

)α
NT [N (um−1)− E (un−1)]

]
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≤ δ1 max
u∈I

∣∣∣∣ET−1

[(
l

s

)α

ET [(L (vm−1)− \ (vk−1))]

]
+ δ2 max

t∈I

∣∣∣∣ET−1

[(
l

s

)α

ET [(E (vm−1)− E (vk−1))]

]∣∣∣∣
= (∆1 +∆2)

uα

Γ(α+ 1)
∥um−1 − vk−1∥ .

Let,m = k + 1 then,

∥vk+1 − vk∥ ≤ ∆ ∥vk − vk−1∥
≤ ∆2 ∥vk−1 − vk−2∥

≤
...

≤ ∆n ∥v1 − v0∥ ,

where ∆ = (∆1 +∆2)
tα

Γ(α+ 1)
. Similarly, we have,

∥vm − vk∥ ≤ ∥vk+1 − vk∥+ ∥vk+2 − vk+1∥+ . . .+ ∥vm − vm−1∥
≤
(
∆k +∆k+1 + . . .+∆m−1

)
∥k1 − k0∥

≤ ∆k

(
1−∆m−n

1− δ

)
∥k1∥ .

As 0 < ∆ < 1, we get 1−∆m−k < 1. Therefore,

∥vk − vk∥ ≤ ∆k

1−∆
max
t∈J

∥v1∥ .

Since ∥v1∥ < ∞, as a result k → ∞, then ∥vm − vk∥ → 0. The series vm is convergent since vm
is a Cauchy sequence in F .

Theorem 4.5. [11] ETDM-CF (10) has a convergent solution.

Proof. Since this proof is similar to Theorem 4.4’s, it has been left out.

Theorem 4.6. [8] ETDM-ABC (10) The solution is convergent.

Proof. This proof has been left out as it is similar to Theorem 4.4’s.

5 Applications

Equation (1) has an approximate analytical solution, which is provided in this section. The
effectiveness of the approach is demonstrated by the numerical results, which are also utilized to
calculate its accuracy compared to precise and/or numerical answers found in previous research.
The good performance and simple implementation of the findings are demonstrated by applying
our approach. The results are shown in Tables 1, 2 and 3.
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5.1 Tables and figures

Table 1: An analysis of the EFSKIE absolute errors with c = 0.1 and α = 1.

t η ETDM-C ETDM-CF ETDM-ABC q-HAM 42

0.1 0.0 0 0 0 0
3.0 0 0 0 3.46944e− 18

7.0 1.73472e− 18 1.73472e− 18 1.73472e− 18 5.20417e− 18

10.0 4.33681e− 18 4.33681e− 18 4.33681e− 18 4.33681e− 18

0.5 0.0 0 0 0 0
3.0 3.46944e− 18 3.46944e− 18 3.46944e− 18 3.46944e− 18

7.0 5.20417e− 18 5.20417e− 18 5.20417e− 18 0
10.0 2.16840e− 18 2.16840e− 18 2.16840e− 18 2.16840e− 18

1.0 0.0 0 0 0 0
3.0 3.46944e− 18 3.46944e− 18 3.46944e− 18 0
7.0 0 0 0 5.20417e− 18

10.0 4.33681e− 18 4.33681e− 18 4.33681e− 18 4.33681e− 18

Table 2: Comparison of the absolute errors of TFSKIE with α = 1, and c = 0.25.

t η ETDM-C ETDM-CF ETDM-ABC q-HAM 42

0.1 0 1.22634e− 14 1.22634e− 14 1.22634e− 14 1.22679e− 14

3.0 5.88899e− 15 5.88900e− 15 5.88899e− 15 5.89806e− 15

7.0 3.39521e− 16 3.39514e− 16 3.39521e− 16 3.40006e− 16

10.0 2.93398e− 16 2.93396e− 16 2.93398e− 16 2.91433e− 16

0.5 0 7.66517e− 12 7.66517e− 12 7.66517e− 12 7.66517e− 12

3.0 3.68154e− 12 3.68154e− 12 3.68154e− 12 3.68154e− 12

7.0 2.12856e− 13 2.12856e− 13 2.12856e− 13 2.12857e− 13

10.0 1.64157e− 13 1.64157e− 13 1.64157e− 13 1.64160e− 13

1. 0 1.22641e− 10 1.22641e− 10 1.22641e− 10 1.22641e− 10

3.0 5.89071e− 11 5.89071e− 11 5.89071e− 11 5.89071e− 11

7.0 3.41099e− 12 3.41099e− 12 3.41099e− 12 3.41099e− 12

10.0 2.62408e− 12 2.62408e− 12 2.62408e− 12 2.62408e− 12

700



T. A. Khalid Malaysian J. Math. Sci. 19(2): 691–706(2025) 691 - 706

Table 3: Comparison of the absolute errors of TFSKIE with α = 1, and c = 0.5

t η ETDM-C ETDM-CF ETDM-ABC q-HAM 42

0.1 0 1.31356e− 05 1.31356e− 05 1.31356e− 05 1.31356e− 05

3.0 2.09024e− 07 2.09024e− 07 2.09024e− 07 2.09024e− 07

7.0 4.54592e− 08 4.54592e− 08 4.54592e− 08 4.54592e− 08

10.0 2.32576e− 09 2.32576e− 09 2.32576e− 09 2.32576e− 09

0.5 0 7.74067e− 03 7.74067e− 03 7.74067e− 03 7.74067e− 03

3.0 2.32524e− 05 2.32524e− 05 2.32524e− 05 2.32524e− 05

7.0 2.57421e− 05 2.57421e− 05 2.57421e− 05 2.57421e− 05

10.0 1.31386e− 06 1.31386e− 06 1.31386e− 06 1.31386e− 06

1. 0 1.04808e− 01 1.04808e− 01 1.04808e− 01 1.04808e− 01

3.0 1.02486e− 03 1.02486e− 03 1.02486e− 03 1.02486e− 03

7.0 3.67202e− 04 3.67202e− 04 3.67202e− 04 3.67202e− 04

10.0 1.87014e− 05 1.87014e− 05 1.87014e− 05 1.87014e− 05

vc0(η, t) =
4

3
b2
(
2− 3 tanh2(bη)

)
,

vc1(x, t) = −2048b9tβ tanh(bη) sech2(bη)

3β(λ+ 1)
,

vc2(x, t) =
524288b16t2λ(cosh(2bη)− 2) sech4(bη)

9λ(2β + 1)
,

substituting vc0(η, t), v
c
1(η, t), . . . in (22). The series solution for ETDM-C is obtained as follows,

va(η, t) ≈ 4

3
b2
(
2− 3 tanh2(bη)

)
− 2048b9tβ tanh(bη) sech2(bη)

3λ(β + 1)

+
524288b16t2β(cosh(2bη)− 2) sech4(bη)

9λ(2µ+ 1)
+ . . . .

(38)

The result is shown in Figure 1.

ETDM-CF: Utilizing the ETDM-CF, we produce the ensuing solutions,

vCF
0 (η, t) =

4

3
b2
(
2− 3 tanh2(bη)

)
,

vCF
1 (η, t) = −1

3
(2048)b9(β(t− 1) + 1) tanh(bη) sech2(bη),

vCF
2 (η, t) =

262144

9
b16
(
β2
(
t2 − 4t + 2

)
+ 4β(t− 1) + 2

)
× (cosh(2bη)− 2) sech4(bη),

substituting uCF
0 (η, t), vCF

1 (η, t), . . . in (30), we obtain the ETDM-CF series solution as,

vCF (η, t) ≈ 4

3
b2
(
2− 3 tanh2(bη)

)
− 1

3
(2048)b9(β(t− 1) + 1) tanh(bζ) sech2(bη)

+
262144

9
b16
(
β2
(
t2 − 4t + 2

)
+ 4β(t− 1) + 2

)
× (cosh(2bη)− 2) sech4(bη) + . . . .

(39)
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The result is shown in Figure 2.

Figure 1: Numerical solution of ETDM-C with different α values and c = 0.1.
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Figure 2: Numerical solution of ETDM-CF with different α values and c = 0.1.

ETDM-ABC: By employing the ETDM-ABC, we obtain the following successive solutions,

vABC
0 (η, t) =

4

3
b2
(
2− 3 tanh2(bη)

)
,

vABC
1 (η, t) = −2048

3
b9(β(t− 1) + 1) tanh(bη) sech2(bη),

vCF
2 (η, t) =

262144

9
b16
(
β2
(
t2 − 4t + 2

)
+ 4ββ−(β − 1)t− 1) + 2

)
× (cosh(2bη)− 2) sech4(bη),

substituting uCF
0 (η, t), vCF

1 (η, t), . . . in (30), we obtain the ETDM-CF series solution as,

vCF (η, t) ≈ 4

3
b2
(
2− 3 tanh2(bη)

)
− 1

3
(2048)b9(β(t− 1) + 1) tanh(bζ) sech2(bη)

+
262144

9
b16
(
β2
(
t2 − 4t + 2

)
+ 4β(t− 1) + 2

)
× (cosh(2bη)− 2) sech4(bη) + . . . .

(40)

The result is shown in Figure 3.
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Figure 3: Numerical Solution of ETDM-ABC with different α values and c = 0.1.

6 Conclusions

In this work, we study TFSKIE using the Zaki transform with the benefit of Caputo, CF, and
ABC derivatives. Where ETDM is amethod that combines the Zaki transform and decomposition.
Unlike the Adomian method, the proposed solution eliminates the need to calculate fractional
derivatives and fractional integrals within the iteration process, which facilitates the estimation
of the sequence. Numerical applications have demonstrated the effectiveness and accuracy of the
proposed technique. To illustrate the theoretical perspective and visualize the dynamic behavior,
the results of the presentmethod are in good agreementwith the proven results. The implemented
methodology and the used fractional operator can be efficiently used in nonlinear fractional dif-
ferential equations of variable order.
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